& \\Qﬁ/{\g// L /// ‘0
. |
oV, 82 AlIM /)\

/ \<§

Q Yo e 2 Association for Information and Image Management / / . W
\. v, N 9 ag RN]
\\// \\/\b ///’e\\ &% //\\é
\\\// 58 o N &
N & ¥, &
Cent]ime;er 3 4 5 6 7 8 9 10 11 12 13 14 15 mm
2 | 3 4 5
Inches “ 10 =l
= iy
" P I
= L2
2 It ye
\9/\\/// N \/@\\\
N 7N
0\\& // 2, // \ \//4\\\\ //\\
@§% :yj‘“f;/%ﬁ\y //\\// //s\\\\%i; P //\
RAY MANUFACTURED T TANDARDS 4 T
, % 0‘\\\ / CTURED TO AIIM STANDARD /{1»//1\\ %2\\\@

/ BY APPLIED IMAGE, INC. z

10of1

COJ‘HC\W quO(DaQOS-' -5

7 R SR Sl

Active Messages Versus Explicit Message Passing Under SUNMOS*

Rolf Riesen
Sandia National Laboratories

rolf@cs.sandia.gov

Abstract

In the past few years much effort has been devoted
to finding faster and more convenient ways to ex-
change data between nodes of massively parallel dis-
tributed memory machines. One such approach, taken
by Thorsten von Eicken et al.[6] is called Active Mes-
sages. The idea is to hide message passing latency
and continue to compute while data is being sent and
delivered.

We have implemented Active Messages under SUN-
MOS for the Intel Paragon and performed various ez-
periments to determine their efficiency and utility. In
this paper we concentrate on the subset of the Active
Message layer that ts used by our implementation of
the Split-C library. We compare performance to ez-
plicit message passing under SUNMOS and ezplore
new ways to support Split-C without Active Messages.
We also compare our implementation to the original
one on the Thinking Machines CM-5 and try to de-
termine what the effects of low latency and low band-
width versus high latency and high bandwidth are on
user codes.

1 Introduction

Over the past few years, network bandwidth has
increased dramatically, while latency, the time it takes
to access the network, has decreased. This is true for
distributed environments using ATM and FDDI, as
well as massively parallel systems such as the Intel
Paragon with a peak bandwidth of 200 MB/s in fast
streaming mode.

Unfortunately, software has not kept up with this
trend. This is evident in OSF/1 AD for the Intel
Paragon. While the hardware is capable of achiev-
ing 175 MB/s in slow streaming mode, a user level

*This work was supported by the United States Department
of Energy under Contract DE-AC04-94AL85000.

[t Rt

SRS TR Gt TR DROC LMIED T B DR T D

L

Arthur B. Maccabe

University of New Mexico
Albuquerque, NM 87185-1109 Albuquerque, NM 87131
maccabe@cs.unm.edu

Stephen R. Wheat

Sandia National Laboratories
Albuquerque, NM 87185-1109
srwheat@cs.sandia.gov

code gets at most 65 MB/s for large messages. User
level latencies are on the order of 45 micro seconds[4].

Some researchers try to hide this latency and per-
form other computations while data is in transit. Oth-
ers try to minimize system software overhead, and yet
others try to accomplish both. Split-C and active mes-
sages have received much attention because of their
attempt to tackle the problem as a whole and provide
a novel form of message passing.

We have implemented active messages and ported
Split-C to SUNMOS on the Intel Paragon. In this
paper we compare the performance of explicit message
passing, active messages, and Puma portals.

In section 2 we give an overview of active messages
and describe how we implemented them in SUNMOS.
Section 3 gives a brief introduction to the two types of
Puma portals [7] used for the measurements in this pa-
per. In Section 4 we look at Split-C, our implementa-
tion and its relationship to active messages and Puma
portals. We are now ready to run test codes and mea-
sure the performance of the various paradigms. The
results are presented in section 5. The paper concludes
with a comparison of Split-C and active messages im-
plementations on the Thinking Machines CM-5 and
the Intel Paragon.

2 Active Messages

Active messages have been proposed in [6] and are
the lowest message passing level available on the CM-
5[5]. Other communication paradigms on the CM-5
are implemented using active messages.

An active message consists of a function address
and four! 32 bit parameters (20 bytes). Since all the
nodes in a SPMD application share the same memory
map, it i1s possible for a node to determine the start

IThe latest implementation allows up to 17 parameters (72

TR

address of a function on another node by looking at
the same function on the local node.

When an active message arrives, program execution
continues at the address specified in the active mes-
sage header. This function, called an active message
handler, is invoked with the parameters supplied by
the sender. When the active message handler finishes,
program control returns to the point just prior to the
active message arrival.

There are two reasons why this method is fast on
the CM-5 and can be used as the basic message passing
mechanism. First, in order to send an active message
no access or alignment checks are needed, since the
active message send function is called with value pa-
rameters only. The user cannot send data that is not
in her address space. The function address does not
need to be verified either. If control is transferred to
a non-existing function or outside the user’s address
space, the memory management unit of the receiving
node will fault the user process.

The second reason for the efficiency of active mes-
sages on the CM-5 is the fact that the communication
hardware is accessible from user level. Inserting and
extracting messages into and from the communication
network can be done without trapping into the ker-
nel. This also means, that the active message layer on
the CM-5 has to poll the network for new messages.
While this makes receipt and dispatch of active mes-
sages quick, it can cause delays, if the receiving node
is very busy.

The Intel Paragon does not provide direct user ac-
cess Lo the communication hardware. The SUNMOS
implementation of active messages therefore requires
a trap into the kernel to send, and an interrupt on the
receiving end to receive an active message. Because
of this, active message startup and dispatch times
are much higher under SUNMOS than they are on
the CM-5. However, incoming requests are handled
as they arrive without the need for application level
polling. Thus, incoming requests are not delayed while
the application is involved in a lengthy computation.

To compare the relative merits of the approaches we
coded a simple matrix multiply routine. Under SUN-
MOS using Split-C and active messages this code ran
much faster than the same code under an OSE nnple-
mentation of Split-C that uses polling. 'The SUNMOS
unplementation also outperformed the original CM-5
implementation by a factor of seven [3] [1].

3 Puma Portals

Puma, the successor to SUNMOS, currently under
development at Sandia National Laboratories, offers
portals as the basic message passing mechanism. Por-
tals were designed to be very efficient and simple, yet
powerful enough to support any of the currently avail-
able and proposed message passing paradigms|7}, [2].
In this paper we concentrate on two of the four portal
types provided by Puma.

A readmem portal allows a process on a node to
specify a region of its memory space to be readable by
other processes in its group. Once a memory region
has been declared to be readable, processes on other
nodes can issue a request that are handled by the ker-
ne! on the node with the readmem portal. Therefore,
once a readmem portal has been setup, no context
switch to the user level is required to read data from
the readmem portal region.

A writemem portal is used by a process to make
parts of its memory writable by other processes in its
group. When a kernel receives data to be put into a
writemem portal, it certifies the validity of the request
and the DM As the data directly into the desired mem-
ory region. Again, no context switch to the user level
is required for the operation to complete.

Puma is not yet available on the Intel Paragon. For
this paper we have changed the SUNMOS kernel to do
the necessary processing for readmem and writemem
portals. The numbers reported are therefore very close
to the numbers we expect for the Puma kernel later
this year.

4 Split-C

Split-C is built on top of active messages. It is a
superset of the C programming language and offers a
two dimensional view of a global shared memory. In
contrast to high performance Fortran and other sim-
ilar approaches, it offers the programimer a clear cost
model for memory access. The programmer decides
the data distribution and is always aware when a data
access involves a remote node. Split-Ct distinguishes
between local and global pointers. Local pointers can
only point to memory locations on the local node. A
global pointer consists of an address and a node num-
ber to speeify a coordinate in the two dimensional
memory space[1].

Split-C gets its name from the possibility to spht
the data access request and actual delivery into two
parts; the so called “split-phase” read operation. In
between the programmer can use the time to continue

double *global gPtr;
double local, x;

/* Split phase assignment */
local:= *gPtr;

/*
** other processing...
** "local" unknown.

*/

state of

sync();

/*

The global value pointed to by
**% “gPtr' is now available in the
** variable "local".

*/

x = local * 3.0;

Figure 1: Split-C Code Fragment

computation. The example in Figure 1 should clear
this up:

The assignment to the variable local will cause a
data transfer from another node?. Once the request
has been issued, computation can continue. Before the
value of local is used, a call to sync() is on order.
The call will block until the data has arrived, or return
immediately, if it is already there. Note that sync()
is not a global operation. Only the node issuing the
sync() is blocked.

The Split-C team at Berkeley has modified the gec
compiler and ported it to various architectures. We
have retargeted the compiler to run on Sun work-
stations and produce code for the Paragon. We also
rewrote the Split-C library to take advantage of spe-
cific SUNMOS features. Doing this she ved that Split-
C can be implemented without active messages. While
active messages are more general than readmem and
writemem portals, the latter is all that Split-C needs.
We have plans to port Split-C to Puma once it be-
comes available. In the meantime, the Split-C library
uses active messages under SUNMOS as well as ex-
plicit message rassing for larger data transfers.

2This assumes gPtr points to another node. Local access
through global pointers is possible, but less efficient than access
though a local pointer.

5 Data Transfers

In this section we mieasure the time it takes to write
and read data from a remote node using explicit mes-
sage pessing, active messages, and portals. In Split-
C, an assignment of a single double precision floating
point number to a global location causes the transfer
of eight bytes from one node to another. Of course,
it is possible to group several small requests together
and transfer all the data in a single operation. While
it makes sense to do that, even for explicit message
passing codes, the difference in transmit time between
the three methods under investigation is diminishing
for large messages.

Table 1 illustrates this. The first column shows the
size of remote read requests in kilo bytes. The sec-
ond, third, and fourth column show the time in micro
seconds it takes to complete the request using active
messages, explicit message passing, and readmem por-
tals respectively. While there is a measurable differ-
ence between the three methods, its effect becomes
less and less important. This is shown in the last two
columns of the table. We assume the readmem por-
tal time for a given size to be 100%. The second to
last column then shows how much more, in percent, it
takes to complete the transfer using active messages.
The last column shows the difference in percent be-
tween readmem portals and explicit message passing.
For this reason we only consider data transfers of less
than 256 bytes for the reminder of this paper.

5.1 Remote Read Using Active Messages

The algorithm used to read memory on a remote
node, using active messages, is a follows:

1. The local node sends an active message to the
remote node. The message contains the address
of a simple active message handler, the amount of
requested data, and the start address of the data.

2. The message handler invoked on the remote node
simply uses the length and address information
to send a message containing the requested data
back to the local node.

3. The local node has preposted a receive and the
data will be deposited in the local user memory.,

Figure 2 shows the result for all three methods for
message sizes from 4 to 256 bytes. Each data point
is the result of 100 trials. The plot shows the mini-
mum, average, and maximum observed for each size
measured.

time in us

Size in k Bytes AM msg portal | AM vs. portal | msg vs. portal

1] 160.0us | 146.1us | 118.0us 35.6% 23.8%

51 181.3us | 166.8us | 139.0us 30.4% 20.0%

10 | 216.5us | 204.0pus | 174.8us 23.9% 16.7%

50 | 471.2us | 457.1us | 428.7us 9.9% 6.6%

100 | 809.9us | 793.1us | 765.8us 5.8% 3.6%

500 | 3366.9us | 3345.6us | 3319.Tus 1.4% 0.8%

1000 | 6549.9us | 6521.5us | 6499.6us 0.8% 0.3%

Table 1: Large Data Transfers (Read)
Remote Memory Read

T L i T T
220 - .
200 1
180 -

active messages -—

msg passing -
readmem portal - - -
80 - -
60 L L A i 1
0 S0 100 150 200 250

Number of Bytes

Figure 2: Remote Read Access

5.2 Remote Read Using Portals

The steps involved to read remote memory using a
readmem portal are as follows:

1. The local node preposts a receive for the re-
quested data and then sends a request to the re-
mote readmem portal. The request contains the
address and amount of data to be read.

2. The kernel on the remote node bandles the re-
quest and sends the desired data.

3. The data arrives at the local node and the re-
ceiver is informed through a flag that the data
has arrived.

5.3 Remote Read Using Explicit Message
Passing

For comparison reasons we include the measure-
ments for a explicit message passing remote read. It
works as follows:

1. The remote node posts a receive for readmem re-
quests.

2. The local node sends a request containing the ad-
dress and amount of data requested.

3. The remote node receives the request, handles it,
and sends the desired data to the local node.

4. The local node has preposted a receive for the
data. It will be deposited in the local user mem-
ory.

Note that the semantics of this algorithm are
slightly different than that of the previous two. The
user code on the remote end has to anticipate the time
when the readmem request arrives and prepare accord-
ingly. If the code is not ready for the request, or it is
busy doing other things, the data transfer will be de-
layed. Portals and active messages do not have this
problem. As soon as a request arrives, it will be han-
dled, no matter where local program control resides
at that instant. We have included explicit message
passing here only to compare transmission times. We
do not imply that Split-C could be implemented effi-
ciently using explicit messages passing only.

Figure 2 clearly illustrates that using portals under
SUNMOS is superior to active messages and explicit
message passing. In both cases that has to do with
the time that is saved by handling the request in the
kernel versus a context switch into user space. Our

implementation of active messages makes the problem
even worse, since two context switches are required.
One to activate the message handler thread, and a
second one to return to the regular user thread.

5.4 Remote Write Using Active Messages

In order to measure writemem performance using
active messages, we proceed as follows:

1. The local node sends an active message contain-
ing the amount of data to be shipped, as well as
the address on the remote node where it should
be deposited.

2. Immediately after that the local node sends a
message containing the write data.

3. The active message handler on the remote node
issues a receive into the location specified by the
parameters sent in the active message.

At this time the operation is complete. To get ac-
curate timings, we have the remote node send the data
back in the same fashion. We measure the total time
and then divide by two. Figure 3 shows the results.

5.5 Remote Write Using Portals

To send data to a writemem portal the local node
simply sends the data to the portal on the remote
node. The kernel will receive the request and DMA
the data into the user memory. In order to measure
the time it took, the test code on the remote node polls
the memory location to detect when the data arrives.
It then turns around and sends the data back, so the
local node can measure the total time and divide by
two.

5.6 Remote Write Using Explicit Mes-
sage Passing

Again, we include this test for comparison reasons
only. Since the remote node has to be ready and poll
for incoming writemem requests, we do not feel that
explicit message passing can be substituted for portals
or active messages.

Our test code posts a receive for the writemem re-
quest on the remote node. The local node sends a
first message containing the address and the amount
of data. A second message sent immediately after-
wards contains the data. Once the remote node re-
ceives the first message, it can issue a receive request
for the desired amount into the appropriate memory
location.

Remote Msmory Wiite

220

g

£

§

250
Figure 3. Remote Write Access
6 Summary Acknow]edgments
We have seen ¢4 Split-C cap be Implemented ys. We wish to thank T. Macy Stalleup ang Michae]

Ing portals op active Messages as the OWest message C. Proicoy of Intel’s Super Computmg Division fo
passing mechanism. A comparisop of remote daty . their assistance with o, Ware issues on oy Paragon
cess using Portals, actjye messages, and explicit, mes. Machines. Thaps also go the the feémaining SUN-
Sage passing shows that por¢a)g have superjo, perfor- MOS/Pum, team for inpy4 and assistance to this pa-
Mance compareq 4, the other tw, Mechanisms, Ope per.

tional coptey SWitch from the active message handjer References

back to the regular yser thread. Othe, architectyreg . .

Such as the CM-5, can make active Messages more (1] Daviq . E.

efficient by providing user Jeve} access to the commuy- Cul!er, A'_ld’ea Dussea,u, Seth Copen GOldStem’

nication hardware. Arvm('i Krlshnamurthy, Steven ljumetta, Thorsten
In [5] a time of approximately 10us i reported o von Ex?ken‘, and_ Katheripe Yehpk. Paralle} pro-

write foup words® jntq a remote node o a CM-5 ryp. gfa{nmmg n Split-C. I Pr'oceedzng,g of Supercom.

ning at 40 MHz. Ty has to pe Compared o T0us puting g3, Pages 262-273, November 1993,

using portalg under SUNMOs on the Intef Paragon, [2] Arthur g, Maccabe and Stephen R. Wheat. Mes-

HOWeVel‘, it should be noted that the active Message sage Passing in PUMA Technica] report SANDg3.

layer op the CM-5 has to poll for the data. This Means 0935, Sandi, Nationa] Laboratories, 1993

that a node busy doing Computatjopg Might net han-

dle requests as quickly as the benchmarks might Sug- (3] Rolf Ricsen, Arthur B, Maccabe, and Stephey, R.

gest, heat, Split-C apg active Messages ypder SUN-

MOS o, the Inte] Paragop Submigte to Super-
*4 datq words and 4 function address = 5 bytes, computing 94, 1994,

(4]

Bernard Traversat, Bill Nitzberg, and Sam
Fineberg. Experience with SUNMOS on the
Paragon XP/S-15. In Proceedings of the Intel
Supercomputer User’s Group. 1994 Annual North
America Users’ Conference., June 1994.

Lewis W. Tucker and Alan Mainwaring. CMMD:
Active messages on the CM-5. Parallel Computing,
20(4):481-496, April 1994.

Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: A mechanism for integrated communication
and computation. In Proceedings of the 19th In-
ternational Symposium on Compuier Architecture,
Gold Coast, Australia, May 1992. ACM Press.

Stephen R. Wheat, Arthur B. Maccabe, Rolf
Riesen, David W. van Dresser, and T. Mack Stall-
cup. PUMA: An operating system for massively
parallel systems. In Proceedings of the Twenty-
Seventh Annual Hawaii International Conference
on System Sciences, pages 56-65. IEEE Computer
Society Press, 1994.

DATE

FILMED
/7 /94

